If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2-4x+2=0
a = -16; b = -4; c = +2;
Δ = b2-4ac
Δ = -42-4·(-16)·2
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-12}{2*-16}=\frac{-8}{-32} =1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+12}{2*-16}=\frac{16}{-32} =-1/2 $
| 3x+20=-28 | | 52-v=180 | | 4k^2-k-7=0 | | x-125=375 | | (x-3)-2(x+6)=-5{-10}{-4}{8} | | 200=140-w | | y+93=121 | | 3w^2-w-6=0 | | 11^(6*x)=(38) | | 47=3u+14 | | 1=2x-13 | | -5/3x+4/7=-1/2 | | -2x^2-4x+160=0 | | −2x^2+32x−120=0 | | 3(7x-4)^2+6=33 | | 4(w+8)^2+12=120 | | (s-1)^2=64 | | -38=5u+7 | | (8n-4)^2=25 | | (y+5)(y-1)=-8 | | 4.6y=55.2 | | p^2=4p+45 | | -3(5x+2)=7 | | 2z(5z-1)=-15z+3 | | 3-8=-8-2x | | 4z(5z+4)=15z+12 | | 6y-9+2y–5=-8y+17+4y | | 2/3(-x-3)=8 | | 1/5(-2y-9)=-7 | | 2(y+1)=-y+5 | | (2x+3)(x-9)=0 | | 1/5(x+2)=10 |